Effects of grassland conversion to croplands on soil organic carbon in the temperate Inner Mongolia.
نویسندگان
چکیده
This study investigated the effects of grassland conversion to croplands on soil organic carbon (SOC) in a typical grassland-dominated basin of the Inner Mongolia using direct field samplings. The results indicated that SOC contents decreased usually with increasing soil depth, with significant differences between the upper horizons (0-30cm) and the underlying horizons (30-100cm). Also, SOC densities decreased with an increase in the depth of soils. Average SOC densities in the upper horizons were 2.6-3.7 and 6.0-8.3kgCm(-2) for desert grassland-cropland sites (sites 1 and 2) and meadow-cropland sites (sites 3 and 4), respectively, with significant differences between grasslands and croplands (P<0.05). However, the SOC densities in the underlying horizons did not significantly differ between the land uses. The SOC densities up to 100cm depth were much higher in the meadow-cropland sites than in the desert grassland-cropland sites, reaching approximately 16 and 6kgCm(-2), respectively. The SOC: total nitrogen (TN) ratios were approximately 10, with no significant difference among the soil horizons of grasslands and croplands. The conversion of grasslands to croplands induced a slight loss of SOC, with a range of from -4% to 22% for the 0-100cm soil depth over about a 35-year period, in the temperate Inner Mongolia.
منابع مشابه
Changes in soil carbon stocks and related soil proper- ties along a 50-year grassland-to-cropland conversion chronosequence in an agro-pastoral ecotone of Inner Mongolia, China
Land use change significantly influences soil properties. There is little information available on the long-term effects of post-reclamation from grassland to cropland on soil properties. We compared soil carbon (C) and nitrogen (N) storage and related soil properties in a 50-year cultivation chronosequence of grassland in the agro-pastoral ecotone of Inner Mongolia. Field surveys on land use c...
متن کاملEffects of temperature and grazing on soil organic carbon storage in grasslands along the Eurasian steppe eastern transect
Soil represents the largest terrestrial organic carbon pool. To address global climate change, it is essential to explore the soil organic carbon storage patterns and their controlling factors. We investigated the soil organic carbon density (SOCD) in 48 grassland sites along the Eurasian steppe eastern transect (ESET) region, which covers the Inner Mongolia grassland subregion and Mongolia gra...
متن کاملLosses in carbon and nitrogen stocks in soil particle-size fractions along cultivation chronosequences in Inner Mongolian grasslands.
Cultivation in semiarid grasslands induces large changes in soil organic matter (SOM) stock. To better predict the effects of cultivation on SOM pools, there is a need to identify the soil fractions that are affected and the extent to which they are affected. Using four cultivation chronosequences in Inner Mongolian grasslands of northern China, we investigated the changes in soil organic carbo...
متن کاملمطالعه اثرات تغییر کاربری اراضی بر میزان کربنآلی و سایر ویژگیهای خاکهای ورتیسول (مطالعه موردی دشت بیلهور استان کرمانشاه)
Reduction of quality and soil productivity due to organic carbon losses is one of the most important consequences of land use changes, that creates irreparable effects on the soil. To evaluate the land use effect on the amount of soil organic carbon in Vertisols, Sartip Abad series with extent of 1850 hectare in south of Bilehvar area in Kermanshah province was studied by using the completely r...
متن کاملEffects of Nitrogen Fertilization on Soil Microbial Biomass and Community Functional Diversity in Temperate Grassland in Inner Mongolia, China
Nitrogen (N) fertilization may profoundly affect soil microbial communities. In this study, a field fertilization experiment was conducted in temperate grassland in Inner Mongolia, China to examine the effect of N fertilization on soil microbial properties and the main factors related to the characteristics of soil microbial community. Soil microbial biomass carbon (MBC) and microbial functiona...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of environmental management
دوره 86 3 شماره
صفحات -
تاریخ انتشار 2008